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ABSTRACT

Recent advances in visual analytics have enabled us to learn from
user interactions and uncover analytic goals. These innovations set
the foundation for actively guiding users during data exploration.
Providing such guidance will become more critical as datasets grow
in size and complexity, precluding exhaustive investigation. Mean-
while, the machine learning community also struggles with datasets
growing in size and complexity, precluding exhaustive labeling. Ac-
tive learning is a broad family of algorithms developed for actively
guiding models during training. We will consider the intersection
of these analogous research thrusts. First, we discuss the nuances
of matching the choice of an active learning algorithm to the task
at hand. This is critical for performance, a fact we demonstrate
in a simulation study. We then present results of a user study for
the particular task of data discovery guided by an active learning
algorithm specifically designed for this task.

Index Terms: Human-centered computing—Visual analytics;
Human-centered computing—Empirical studies in visualization
Computing methodologies—Active learning settings

1 INTRODUCTION

The visual analytics community has made significant strides in de-
veloping systems that facilitate the interplay between humans and
machines in exploratory data analysis and sensemaking [9,10,13,21,
23, 24, 35]. These advances have enabled us to learn from user inter-
actions and uncover their analytic goals. Moreover, they have set up
the foundation for creating visual analytic systems that guide users
during data exploration. Providing such guidance will likely become
more critical as datasets grow in size and complexity, overwhelming
the limited screen real estate and human cognitive power.

The nuances of providing guidance varies with respect to factors
including the visual analytic task at hand [7]. Prior work has ex-
plored a set of visual analytic tasks and corresponding techniques for
providing guidance. For example Lin et al. [27] proposed a visual
analytic system to aid users in detecting anomalous clusters in data.
Similarly, Kucher et al. [25] presented a visual analytic system to aid
users in building accurate stance classification models. Extending
upon prior work, we focus on the common, yet tedious, task of
discovery: sifting through a dataset and identifying valuable data
points efficiently. For example, an intelligence analyst may spend
substantial time reviewing documents while unraveling a terrorist
attack plot, many of which may be irrelevant to the attack. Like-
wise, a scientist may test numerous molecules – incurring high cost –
while searching for a new drug candidate, many of which may prove
useless in a medical setting. In these situations, the goal is to guide
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the user to discover as many relevant data points as possible while
alleviating information overload caused by irrelevant information.

To identify an algorithm for guiding users in the task of discovery,
we examine the family of active learning algorithms. Active learning
algorithms strategically guide the model during training to fulfil an
analytic objective. First, we compare and contrast a set of active
learning algorithms and demonstrate that their effectiveness is task-
dependent. We demonstrate that choosing an appropriate technique
for a given visual analytic task is key to performance. In doing so, we
focus our experiments on the VAST challenge 2011 dataset which was
designed to mimic a realistic national security scenario [8, 16, 32].

Once we identify active search as the leading active learning
algorithm for the task of discovery, we design a visual analytic
proof-of-concept tool and augment it with active search. In this
prototype, the interactive visualization is the medium of communi-
cation between the algorithm and the user. The user inspects data
points sequentially and determines their relevance to the task at hand.
Simultaneously, the algorithm translates the observed interactions
into labels for the underlying models and then guides the user by
recommending the most promising data points for investigation.

Although there has been a history of integrating similar ML ap-
proaches into visual analytic tools, the impact of these technologies
on human behavior and contributing factors to their effectiveness
are open for investigation. In a preliminary attempt to address this
gap, we conduct a crowd-sourced user study to investigate the im-
pact of the active search algorithm in assisting users during visual
data exploration and discovery. Using our proof-of-concept system,
participants saw a visualization of geo-tagged microblogs, which
provided information about the spread of various disease symptoms.
The task was to assist authorities by searching through social media
posts to identify individuals who may be impacted by the potential
epidemic. We present our user study results, highlighting some of
the promises and challenges of this guided data discovery framework.
The dataset and analysis scripts are available on GitHub 1.

A summary of our contributions is as follows:
• We present a comparison between three active learning al-

gorithms and demonstrate that their performance is task-
dependent. Selecting an appropriate algorithm that maps to a
given visual analytic task is critical.

• We map the interactive data discovery task into an active learn-
ing algorithm (namely active search) and design an ecosystem
where user interactions inform underlying models and the al-
gorithm guides the user through visual clues.

• We present a user study to validate the effectiveness of the ac-
tive search algorithm in the interactive data discovery workflow.
Our results show consistent speedup in discovery throughput
and fewer distractions by irrelevant portions of the data.

2 BACKGROUND

In this section, we provide a brief overview on visual analytic themes
related to learning from user interactions and guiding users during
interactive analysis with a focus on active learning algorithms.

1https://github.com/washuvis/vis2022guideddiscovery
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2.1 Active Learning

As datasets grew in size and complexity, the machine learning (ML)
community faced the challenge of gathering labeled datasets. With
exhaustive labeling no longer being a viable option, ML researchers
developed the family of active learning algorithms to guide the train-
ing process. Active learning traditionally refers to the idea of learn-
ing algorithms choosing their training data strategically by querying
an oracle in order to achieve better predictive performance [33]. Over
time, ML researchers have expanded the active learning paradigm to
include new optimization objectives beyond model accuracy. Some
examples include the discovery of as many members of a given class
as possible (i.e. active search [14]) and the detection of anomalous
categories (i.e. rare category detection [19]). Recently, the visual an-
alytics community has utilized these advances to incorporate humans
in the active learning process via interactive interfaces [24, 25, 27].
To the best of our knowledge, this work is the first to incorporate
and evaluate the active search algorithm in an interactive setting.

2.2 Learning from User Interactions

A significant body of work in the visual analytics community has
sought to enable human–machine partnerships in which machines
are informed by low-level user interactions with interactive visu-
alizations [1, 3, 5, 11, 29, 31, 36]. Here, the technique of semantic
interaction is key, where user interactions with visualization tools
translate into observations for underlying models, integrating user
knowledge in the analysis process and informing intelligent response
by the visualization system [13]. Semantic interactions have been
used to learn expert knowledge [4], improve visual projection [20],
improve text analysis models [24, 25, 34], and mitigate selection
bias [15, 28]. For example, Brown et al. [4] proposed Dis-Function,
a technique to represent expert knowledge as a distance function
which is interactively learned by drag/drop interactions with a 2D
visualization. In their work, the user was not guided by an active
learning algorithm to decide which points to move. Such decisions
fully relied on human judgement. To gauge how human judgement
compares with those of active learning algorithms, Bernard et al. [2]
designed a study where the goal was to select training data for a
classifier. They show that a classifier trained on data selected by
humans can outperform one trained on data selected by an active
learning algorithm. Their findings rely on the underlying assump-
tion that a 2D visualization of the data is available and separates
underlying class distributions. In this work, we evaluate a complete
cycle, where the underlying models learn from user interactions and
an active learning algorithm guides the user in discovery.

2.3 Providing Visual Analytic Guidance

In addition to using interactions to inform machine learning mod-
els, researchers have also developed systems where machines take
actions to guide users in the analytic process [6, 12, 17, 18, 22, 30].
Ceneda et al. [7] have defined guidance as a computer-assisted pro-
cess aimed at resolving users’ knowledge gap during an interactive
session. For example, Kim et al. [24] proposed TopicSifter, an in-
teractive system with the primary purpose of building models with
high recall on text documents. This is an example of a system which
guides the user by recommending potentially relevant keywords to
include in the search space. Another example is ALVA by Kucher et
al. [25] which trains a stance classification model by querying the
human user for labels. Yet another example of incorporating active
learning into visual analytic workflows is RCLens by Lin et al. [27].
Their technique utilizes the rare category detection algorithm [19]
to guide users in identifying anomalies. In the context of our work,
we utilize an active learning algorithm to guide the user to discover
relevant data points efficiently while avoiding irrelevant ones.

3 SELECTING AN ACTIVE LEARNING ALGORITHM

Our primary focus in this section is the strategy for selecting data
points and their effectiveness in accomplishing a given analytic task.
Given a set of unlabeled data points, active learning algorithms
sequentially pick one (or more) data points according to a strategy.
The selected data points are then presented to an oracle to acquire
their labels. This oracle may be a human user or an expensive
procedure (e.g. laboratory experiments). The observed labels are
then used to re-train the underlying models.

In the simplest case, the learning algorithm selects data points
from the set of unlabeled data at random. This strategy, known as
random search, does not aim to optimize any particular objective
and is often used as a baseline in ML literature. When the analytic
goal is to train an accurate model, one approach is to identify points
with the highest uncertainty and acquire their labels. This strategy,
known as uncertainty sampling, prioritizes data points on the bound-
ary of classes where the model may be most confused about the
labels [26]. In some application areas, the primary objective is not
to train an accurate model. Instead, the analyst seeks to identify as
many members of a valuable class as possible. For such scenarios,
Garnett et al. [14] have proposed an active learning approach called
active search. We note that there are more active learning algorithms
available in the ML literature. We focus on these three for demonstra-
tion purposes. To show that choosing the appropriate active learning
strategy for a given analytic goal is critical, we conduct simulations
using the VAST challenge 2011 dataset (described in Sec. 3.1). These
experiments do not aim to simulate user behavior, but rather evaluate
algorithm behavior for a set of analytic objectives.

3.1 Scenario and Dataset
In VAST Challenge 2011, the fictitious city of Vastapolis is under a
biochemical attack, initiating an epidemic with flu-like symptoms.
The health officials have access to a large collection of geo-tagged
tweet-like microblogs. They want to identify impacted individuals,
impacted neighborhoods, and the symptoms from social media posts.
In doing so, they need to identify as many illness-related microblogs
as possible. We select a sample of 50,000 microblogs where only
1.3% of them contain illness related content. We consider the illness
related microblogs to be relevant and the remaining ones to be
irrelevant. We encode the microblogs into a numerical space using
an off-the-shelf word2vec model, and build a k-NN binary classifier
using the cosine similarity metric. This model provides us with a
mechanism to reason about the relevance of an unlabeled microblog
in light of past observations. We cross validated these design choices
against a set of alternatives to ensure our model is a viable choice.

3.2 Simulation Setup
Starting with one illness-related data point as our training set, we
make 250 queries according to each of the following active learning
strategies/algorithms: random search, greedy active search, and un-
certainty sampling. We repeat this experiment 100 times and report
evaluation metrics corresponding to three analytic objectives: Dis-
covery (the number of illness-related microblogs identified within
the 250 queries), Detection (the number of unique symptoms de-
tected within the 250 queries), and Training (the ROC-AUC score of
a k-NN binary classifier trained on the 250 queried data points).

Table 1: Comparing three active learning strategies for three analytic
goals. The evaluation metrics are described in Section 3.2.

Discovery Detection Training
# of microblogs # of symptoms ROC-AUC

Random Search 3.3±0.43 3.3±0.43 0.62±0.01
Greedy Active Search 196.2±13.41 19.8±1.23 0.82±0.01
Uncertainty Sampling 63.8±5.00 17.8±1.26 0.84±0.01



Figure 1: A view of the prototype system for the epidemic dataset.

3.3 Simulation Results
The outcomes of our simulations are shown in Table 1. It is evident
that different active learning strategies are dominant for different
analytic objectives. When the objective is to discover members of a
valuable class efficiently, the active search strategy outperforms the
other strategies significantly. On the other hand, when the objective
is to train an accurate classifier, the uncertainty sampling strategy
outperforms the other strategies. Our results paint a consistent
picture that choosing an appropriate active learning strategy for a
task at hand is critical for performance.

4 EXAMPLE PROTOTYPE AND USER STUDY

To investigate the impact of active search guidance on user behav-
ior during visual exploration and discovery, we designed a crowd-
sourced user study 2 that tasked participants to interact with a map
of the fictional city of Vastapolis (Fig. 1), visualizing microblogs
as dots placed on their posting locations. Hovering on data points
triggered a tooltip containing the microblog and a bookmark button
(Fig. 1, C). A countdown of the remaining time was shown, and
users had the option to exit the experiment or report issues (Fig. 1,
B). User bookmarks were listed in the side bar (Fig. 1, A).

4.1 Task
Participants were told that health professionals had reported a spike
in illnesses with flu-like symptoms, including fever, chills, sweats,
nausea and vomiting, and diarrhea. We informed participants that
the authorities are interested in identifying the impacted parts of the
city by analyzing social media activity. Their task was to assist the
authorities by searching through a dataset of geo-tagged microblogs
using the interactive interface shown in Figure 1 and bookmarking
as many posts containing illness-related information as possible. For
this study, we narrowed the dataset to a sample of 3000 points from
the approximate start of the epidemic, where 33% of the data points
contained illness-related content. We made these design choices to
avoid an overly-crowded map and ensure that the discovery task is
not prohibitively difficult for the participants.

4.2 Participants
We recruited 130 participants via Amazon’s Mechanical Turk plat-
form. Participants were 18 to 65 years old, from the United States,
and fluent in English. Each participant had a HIT approval rating
of greater than 98% with more than 100 approved HITs. After data
cleaning steps outlined in Section 4.4, there were 46 women, 76
men, and 1 participant with undisclosed sex in our subject pool with
ages ranging from 18 to 62 years (µ = 36, σ = 9). 72% of our
participants self-reported to have at least an associate degree. The
average completion time (including reading the tutorial, performing

2This experiment was pre-registered on Open Science Foundation.

the task, and completing the survey) was 12 minutes. The instruc-
tions specified that participants will be compensated $1.00 base pay
and an additional $0.10 bonus for every relevant microblog they
identify (with a maximum of $4.00). Although the advertised pay-
ment structure was designed to incentivize participants to complete
the task, we paid everyone the maximum bonus of $4.00 for fairness.

4.3 Procedure
The experiment complied with an approved protocol per Washington
University’s IRB. Workers who accepted the HIT followed a URL to
the study platform. Our system randomly assigned each participant
to one of the following groups: the active search group, which
received a batch of 10 active search queries in the form of visual
clues (orange dots on the map, as shown in Fig. 1) that were updated
after every bookmark interaction, and the control group, which did
not receive any assistance during exploration. Upon giving consent
to participate in our study, participants were given a tutorial on their
task and their corresponding system. Both groups initiated their
task without any initial “clues,” and in particular the active search
group did not receive assistance for selecting their first bookmark.
Participants were given at most 10 minutes to identify as many
microblogs related to the epidemic as they could using the interactive
tool. Once the users were either satisfied with their search or the
10 minutes were up, they were directed to a post-experiment survey
to collect demographic data, feedback on the system, and they self-
reported their trust towards the suggestions on a Likert scale. In case
our participants experienced technical difficulties, we provided an
option to report issues, exit the session, and receive compensation.

4.4 Data Collection, Cleaning, and Exclusions
We analyze our user study data by focusing on two interactions: in-
spection of microblogs (hovers) and discovery of relevant ones (book-
marks). These two types of interactions inform us about the speed
and accuracy of visual data discovery through the metrics listed in
Table 2. Throughout this analysis, we consider illness-related mi-
croblogs to be relevant. The bookmark and hover purity metrics are
the proportion of all bookmarks and all hovers that involved relevant
data points, respectively. The bookmarks- and hovers-per-minute
metrics inform us about the speed at which users interacted with data
points. The relevant hovers and relevant bookmarks-per-minute met-
rics are the rate at which users interacted with relevant data points,
quantifying both speed and accuracy. Finally, we measure the num-
ber of relevant microblogs discovered by the end of the session and
the number of unique symptoms in the discovered microblogs.

In a pre-processing step, we filtered the collected data to exclude
participants who did not attempt the task or were unable to finish
the experiment. Specifically, we eliminated participants based on
the following four criterion: (1) failed the survey attention checks
(1 subject), (2) reported technical issues (1 subject), (3) hovered3

on fewer than 10 data points (4 subjects), and (4) did not meet the
age qualification (1 subject). A total of 123 subjects remained after
filtering (74 in the control group and 49 in the active search group).

4.5 Results
Suggestion Quality: We begin our analysis by examining the
quality of suggestions provided by the active search algorithm when
seeded with users’ interaction data. We define suggestion purity to
be the proportion of unique relevant microblogs recommended to
the user throughout a given session. On average, active search group
participants had a suggestion purity of 79%. We observe a moder-
ate positive correlation between bookmark purity and suggestion
purity (R2

ad j = 0.594, p < 0.0001), suggesting that the active search
algorithm provides useful recommendations for participants who
interacted with microblogs containing known symptoms.

3We consider a valid hover to be one that lasts at least 500ms (300ms for
triggering the tooltip, and 200ms for skimming the text)
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Table 2: The results of two-sample t-tests on the metrics discussed in Section 4.4

95% CI

Metric Control N=74 Active Search N=40 p-value t-statistic Cohen’s d

Hovers per Minute 16.7±1.19 14.3±1.23 0.0112 −2.58 −0.51
Relevant Hovers per Minute 6.7±0.68 9.2±1.12 0.0001 4.00 0.79
Hover Purity 0.39±0.02 0.63±0.05 < 0.0001 9.70 1.92

Bookmarks per Minute 6.9±0.77 9.5±1.41 0.0006 3.52 0.70
Relevant Bookmarks per Minute 5.4±0.68 8.1±1.26 0.0001 3.98 0.79
Bookmark Purity 0.77±0.04 0.82±0.05 0.2249 1.22 0.24

Relevant Microblogs Bookmarked 53.9±6.80 73.4±11.50 0.0026 3.09 0.61
Unique Keywords Identified 16.1±0.83 15.6±1.32 0.4980 -0.68 -0.13

Suggestion Usage: We observed an unexpected pattern in the active
search group. As shown in Figure 2, for approximately 24% of par-
ticipants in the active search group, suggested microblogs accounted
for less than 10% of their bookmarks. 9 out of 49 participants
did not bookmark any of the suggestions presented to them at all.
Further inspection reveals that the 9 active search participants who
ignored the suggestions had on average 82±9% suggestion purity
and 76±11% bookmark purity. This compares to the the 40 active
search participants who interacted with the suggestions, who had on
average 79±5% suggestion purity and 82±5% bookmark purity. Fi-
nally, we observed a difference between how subjects reported their
trust towards system suggestions on a 1–5 Likert scale in the post-
experiment survey (3.3±0.46 for those who ignored suggestions vs.
4.2±0.24 for those who interacted with the suggestions).

Figure 2: Distribution of proportion of bookmarks resulting from the
active search suggestions.

Moving forward, our analyses focus on the impact of sugges-
tions on data exploration and discovery. Thus, we exclude the 9
participants in the active search group who did not interact with the
suggestions, leaving us with 74 participants in control group and 40
participants in the active search group. This additional filtering step
further cleans our data to compare participants who had access to and
used system recommendations to those who did not have access to
recommendations. This additional filtering step does not impact the
conclusivity of our results in Table 2 (see the supplemental material).

Figure 3: The average number of relevant microblogs discovered and
the 95% confidence interval for each group.

The Effect of Suggestions on Data Discovery: We performed a
series of two-sample t-tests to investigate differences in behavior
in our two study conditions: control and active search. Table 2
summarizes our findings. We found that participants in the active
search group bookmarked and hovered over significantly more rel-
evant microblogs per minute than the control group. Furthermore,
our findings show that the active search group performed fewer
exploratory hovers per minute than the control group, implying that
the suggestions resulted in a more efficient exploratory analysis. For
a more fine-grained analysis, we examine bookmark discoveries as a
function of time. Figure 3 shows the average number of bookmarks
over time for the active search and control groups. We observe
that the active search group consistently outperformed the control
group by bookmarking more relevant microblogs throughout the
ten-minute session. However, it is noteworthy that although the
suggestions improved the quantity of the bookmarks, we found no
measurable difference in the quality or content of the bookmarked
discoveries. Both the active search and control groups collectively
examined similar geographical regions and symptom sets.

Impact of Active Search Suggestions on Usability: In a post-
experiment survey, we asked subjects in both groups three questions
on willingness to use, ease of use, and ease of task completion.
We performed a Mann–Whitney U statistical test at α = 0.05 to
determine if there was a significant difference between the control
and active search groups. The analysis showed some evidence that
the active search group found the system easier to use (U = 1199.50,
p = 0.0336, r = 0.16) and were more willing to use the system
frequently (U = 1192, p = 0.0362, r = 0.16). However, the effect
sizes were small for both. Furthermore, we did not find a significant
difference between the control and active group’s response to ease
of task completion (U = 1397.50, p = 0.2989, r = 0.07).

5 DISCUSSION AND CONCLUSIONS

We considered the task of discovery: identifying relevant data points
to the task at hand efficiently. Upon examining the family of ac-
tive learning algorithms, we selected active search as the leading
technique for guiding this discovery process. Our user study results
validate that guidance provided by the active search algorithm can
significantly improve interactive data discovery. Our findings show
that the participants successfully disregarded irrelevant information
and were more mindful towards the relevant data points. These re-
sults can have high-impact implications for designing visual analytic
tools for tasks such as intelligence analysis and scientific discovery.
Unexpectedly, we observed a nontrivial number of participants who
ignored active search recommendations despite their relevance to
their task. This highlights an avenue for investigating how to present
such recommendations effectively in similar visual analytic systems.
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