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Abstract

The goal of visual analytics is to create a symbiosis between human and computer by leveraging their unique strengths. While
this model has demonstrated immense success, we are yet to realize the full potential of such a human-computer partnership. In
a perfect collaborative mixed-initiative system, the computer must possess skills for learning and anticipating the users’ needs.
Addressing this gap, we propose a framework for inferring attention from passive observations of the user’s click, thereby
allowing accurate predictions of future events. We demonstrate this technique with a crime map and found that users’ clicks
can appear in our prediction set 92% – 97% of the time. Further analysis shows that we can achieve high prediction accuracy
typically after three clicks. Altogether, we show that passive observations of interaction data can reveal valuable information
that will allow the system to learn and anticipate future events.

CCS Concepts
• Human-centered computing → Visual analytics; Visualization theory, concepts and paradigms;

1. Introduction

The overarching goal of visual analytics is to create a symbio-
sis between human and machine. Visualization serves as a medium
that allows users to collaborate with computers in ways that takes
advantage of their distinct strengths [KAF∗08]. Both Crouser and
Chang [CC12, COC13] and Green et al. [GRF08] describe an
affordance-based partnership model that leverages the human’s
unique skills (e.g., reasoning and social awareness) with the ma-
chine’s computational powers. Typically, the human drives the
analysis process by exploring the data to form hypotheses and de-
velop insights. Success in the analytic process hinges on the user’s
ability to perform meaningful interactions with the data and on
the machine’s ability to provide the right information at the right
time [EM10, KAF∗08].

Although this model has shown remarkable success, for many
analysts, information overload is a major concern [CAG∗06,
ME12]. In many ways, today’s tools fall short of their full potential.
A useful collaborative tool should possess the ability to learn about
what the user is doing, what the user will be doing, what the user
ought to be doing, and whether the current trajectory will solve the
problem at hand. Current visual analytics tools do not yet possess
the ability to learn and anticipate actions, and therefore are unable
to tailor their outputs.

The work in this paper aims to model attention during visual data
exploration. We propose a context-aware, data-driven prediction

system that integrates advancements from artificial intelligence to
detect future interactions based on past observations. Specifically,
using clicks as a proxy for attention, we create a hidden Markov
model that represents evolving attention as a series of unobserv-
able states giving rise to actions. We can then automatically infer
elements of interest from passive observations of the user’s clicks,
thereby allowing accurate predictions of future interactions.

For a proof of concept, we conducted a user study and collected
click-stream data as participants explored a map visualization of
reported crimes (see figure 4). Our results show that the proba-
bilistic model can achieve, depending on the type of task, between
92% and 97% accuracy at predicting that the next click will fall
within a small subset of clicks. Further analysis shows that we can
achieve high prediction accuracy in a short period (typically after
three clicks). Altogether, we show that passive observations of in-
teraction can reveal valuable information about users’ attention.

The ability to anticipate future actions opens the door for many
opportunities to improve analysts’ experience. For instance, the
machine can proactively perform tasks such as prefetching, cal-
culation of summaries statistics, suggestion formation, bias or er-
ror identification, and target selection assistance for overcrowded
interfaces. We discuss how the proposed technique can help cre-
ate next-generation visual analytics systems that can automatically
learn users’ focus to support the analysis process better.
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We make the following contributions:

• A generic approach to modeling attention and click dynamics on
a visualization: We present a framework for automatically learn-
ing future click events during data exploration and demonstrate,
using a crime map, how to model users’ attention and actions.

• Predicting future clicks from passive observations: We demon-
strate how to apply this model to a real-world visualization and
dataset. Our proof-of-concept experiment validates that we can
use this approach on real systems for real-time predictions. We
demonstrate the participants’ clicks appear in our prediction set
(5% of the dataset) on average 95% of the time.

• Implications for designing mixed-initiative visualization tools:
We discuss techniques for supporting the user in real time.

2. Prior Work on Modeling and Predicting User Actions

Predicting future actions has been an important area of research
across many fields. For example, in machine-learning, researchers
have used interaction data to model and predict users’ browsing be-
haviors on websites and web search systems [EV03,KB00,RWC18,
SCDT00,WRC16]. In databases, Battle et al. [BCS16] analyzed in-
teraction data to improve prefetching techniques. They showed that
they can successfully predict future actions and that analyzing be-
havioral data resulted in a 430% improvement in system latency. In
HCI, Fu et al. developed statistical and machine-learning models
to predict behavior on crowdsourcing annotation and web search
tasks [FKW∗17]. These are just a few of the many examples of
related work across a vast number of research communities. Most
relevant to this work is research in the area of Analytic Provenance
and prior work on computational modeling of selective attention.

2.1. Tracking User Actions

It is a common belief that interaction logs contain crucial in-
formation about an analyst’s reasoning process with a visualiza-
tion [PSCO09]. Through interaction with a visual interface, an-
alysts explore data, form and revise hypotheses, and make judg-
ments. The term provenance refers to the history of an object or
idea, and analytic provenance researchers aim to track and analyze
the analyst’s process [NCE∗11]. At a high level, the goal is to auto-
matically capture and encode interactions with a visual interface to
infer analysts’ goals and intentions. Researchers and practitioners
can then recall, replicate, recover actions, communicate, present,
and perform meta-analyses on the analysis process [RESC16].

Although the scope of Analytical Provenance research is much
broader than the goal of the current work (we leverage interac-
tion logs to predict future actions), research in this area have
demonstrated a variety of techniques for tracking actions and
workflow. For example, Cowley et al. developed Glassbox with
the goal of logging interactions to infer intent, knowledge, and
work-flow [CNS05]. They captured low-level system actions such
as keyboard and mouse data, file actions (e.g. open, close, and
save), and browser events. Heer et al. recorded actions (e.g.
VizQL statements) and system states to create a graphical history
tool [HMSA08]. More recent work by Feng et al. logged mouse
hovers and search queries to demonstrate metrics for quantifying
data exploration [FPH18]. Dabek and Caban tracked behavioral

data such as clicks on visual elements and tabs. They introduced
a grammar-based approach to modeling user interactions [DC17]
and demonstrated that their technique could be used to capture and
compare users’ analytic process. In this paper, we leverage low-
level interaction (e.g. mouse clicks) to model and predict selective
attention during data exploration.

2.2. Computational Modeling of Selective Attention

Modeling visual attention in images and videos has been an impor-
tant area of research in psychophysics, computational modeling and
neurophysiology (see [BI13] for a review existing work). Current
attention models generally fall into two main categories: bottom-up
approaches and top-down approaches. Bottom-up attention models
(stimulus driven) are based on the low-level features of the visual
scene, while top-down models (goal driven) are determined by phe-
nomenons such task, goals, experience and knowledge.

Seminal work by Koch and Ullman [KU87] used a purely
bottom-up model that decodes a scene based on pre-attentive vi-
sual features (e.g. color, depth, and direction of motion) to create
a saliency map – a two-dimensional topological map that encodes
conspicuity across the entire scene. The central thesis of their work
is salient features within a stimulus “stands out", thus attracting
overt attention. They used a winner-take-all neural network to de-
termine the most salient locations, and defined rules for shifting the
processing focus which can be biased by proximity and similarity
preferences. Much of the existing work on computational modeling
of selective attention have adopted the idea of bottom-up feature
extraction and saliency map (e.g. [IKN98], [IK00], and [IK01] ) to
simulate human viewing behavior. We therefore propose a bottom-
up approach for modeling and detecting attention during visual data
exploration and demonstrate how this method can be used to pre-
dict future attending regions and actions.

2.3. Predicting Actions and Attributes

A handful of work in the Visualization community has directly
addressed the prediction of user actions and attributes. For in-
stance, Wall et al. introduced a framework for quantifying differ-
ent types of biases and proposed a Markov chain technique for
predicting bias in real time [WBFE17]. Work by Brown et al.
used machine-learning techniques to infer user attributes automat-
ically [BOZ∗14]. They showed that off-the-shelf algorithms could
successfully predict completion time and personality traits based
on low-level mouse clicks and moves [BOZ∗14]. Recent work by
Fan et al. used a convolution neural network to infer brush selec-
tion from a simple click and drag interaction design [FH18]. They
demonstrated that their technique can quickly and accurately pre-
dict users’ intended selections.

3. General Modeling Framework

Deviating from past work, we focus on modeling users attention
and interaction in real time with the high-level goal of support-
ing the user during exploratory data analysis. In this work, we use
mouse clicks as a proxy for users’ selective attention on a visual-
ization tool. We propose and demonstrate, for the first time to the
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Figure 1: Extracting low-level features.

best of our knowledge, a model for predicting clicks before they
occur.

To model attention, we use a bottom-up approach that uti-
lizes low-level visual features (detailed in figure 1). It is impor-
tant to note that this low-level encoding does not incorporate top-
down signals that may be derived from the task at hand. Al-
though a number of researchers have created taxonomies for the
types of tasks that are feasible on a visualization system [DE98,
GZ09, YaKS07, ZF98], we lack a thorough understanding of how
top-down forces may drive the user’s attention and analysis pro-
cess. The work in this paper leverages well established graphi-
cal [Ber83] and data mapping principles [CMS09], as well as prior
work on using low-level visual features to model attention in im-
ages [IKN98, IK00, IK01, KU87].

3.1. A Hidden Markov Model Approach

Predicting attention during exploratory data analysis has two main
characteristics: 1) The data are streaming, and 2) There are no avail-

Figure 2: A hidden Markov model approach to modeling attention
and actions. We represent evolving attention as a sequence of latent
variables in the hidden state space. Observable states are the user’s
actions. The conditional distribution of each observation depends
on the state of the corresponding latent variable.

able training data. These properties eliminate supervised machine
learning approaches, as well as many unsupervised techniques (e.g.
RNN), that typically would require waiting until time T to accumu-
late a significant batch of interactions before beginning predictions.
Bayesian methods such as hidden Markov model, have demon-
strated success with time-varying data, do not require extensive
training data, and can stably adapt to real-time changes. Prior work
in the visualization community has also used a similar Bayesian
method for representing bias from mouse interaction [WBFE17].

We construct a hidden Markov model, presuming the user’s at-
tention evolves under a Markov process (that is, the attention at a
particular time depends on their attention at the previous time step),
and interaction events are generated conditionally independently
given this sequence of attention shifts. Figure 2 shows an overview
of the hidden Markov model used. We represent selective attention
as a sequence of latent variables. The conditional distribution of
each observation depends on the state of the corresponding latent
variable. To specify this model, we need to define the following:

• Unobservable states: A space of the possible "interests" driven
by the salient visual features.

• Observable states: A space of possible interactions.
• Dynamical model: A model of the evolution of the user’s atten-

tion over time.
• Observation model: A model of how attention gives rise to ob-

served actions.

3.2. Defining Unobservable and Observable States

First, we define a discrete time index t associated with interactions
with a visualization. At the start of exploring the dataset, we define
t = 0. This index will then increment every time a participant inter-
acts with a visual element. Our model will presume that there is a
hidden, unobserved state zt representing the attention of the user at
time t. We will assume that we can map the sequence of observed
interactions {ot} to this hidden sequence of focus areas. The task
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we consider here is how to infer the hidden attention/focus of the
user by observing their sequence of interactions.

In order to create a model of user interaction, we must first under-
stand the mechanisms that drives the user to interact with a partic-
ular visual element. We also assume that innate biological models
of selective attention drive interactions. At a high level, we build
on Koch and Ullman’s model of visual attention [KU87] and learn
a saliency map for a given time step.

3.2.1. Unobservable States

We begin by segmenting the visualization based on the low-level
visual features. We define M as the mark space that specifies the
types of visual marks and channels used in the visualization. Vi-
sual marks are geometric elements, and there are four primitive
types: points, lines, areas, and volumes [Ber83]. Visual channels
describe the graphical properties of visual marks such as position,
size, color, luminance, shape, texture, and orientation [Ber83]. To-
gether with Card et al.’s data-mapping principles [CMS99] these
design guidelines can be used to describe any existing visual repre-
sentation [CMS09]. We create M = { f1, ..., fN} by decomposing
the visualization into its primitive visual marks and channels, as
detailed in figure 1.

A crucial component of the probabilistic model is the specifi-
cation of a hidden state space, which will represent the attention
of the user at a given time. In general, we propose that designers
can tailor this space for a given scenario. In many scenarios, we
may reasonably assume the users’ attention at a given time to be
related to some weighted subset of visualization marks, for exam-
ple, visual marks of a particular size, color, shape, or in a specific
location. In such a case we may define the latent attention at time t,
as zt = { f1t , ..., fNt ,πt} where π represents the feature weights, and
{ f1t , . . . fNt} represent feature values describing the user’s focus at
time t. We provide more details for the feature weights below.

3.2.2. Observable States

In contrast to the hidden attention space, the space of observed ac-
tions is typically easy to define. We may define ot to be an observa-
tion of the user at time t, where this observation will be an interac-
tion event with a visual element (e.g., mouse clicks, mouse moves,
eye gaze, etc.). We will represent each observation ot = { f ′1, ..., f ′N}
as the set feature values that describes the visual element.

3.3. Dynamical Model

The full specification of a hidden Markov model requires defining a
probabilistic model of the dynamics of the hidden state space, that
is how the user’s latent attention shifts from one time-step to the
next. We define zt to be the latent attention of the user at time t.

3.3.1. Single Task

We model shifts of attention by defining a probability distribution
p(zt+1 | zt) describing the evolution of attention. We propose that
this model should be reasonably easy to define in most visualization
settings. In general, it is unlikely that the user’s focus will change
rapidly from one interaction event to the next. Therefore we can

Table 1: Mathematical symbols.

Symbols Description
t the time an event occurs.

M = { f1, ..., fN} Mark Space: The set of N visual features ex-
tracted from the visualization (e.g., position,
size, and color).

ot = { f ′1, ..., f ′N} observation interaction at time t (e.g., mouse
click). We consider set of values for the N fea-
tures.

π = [π( f1), ...,π( fN)] bias vector for all features f ∈M .

zt = { f1t , ..., fNt ,πt} latent attention at time t.

often choose this dynamics model to represent a simple random
diffusion in the latent space:

zt+1 = zt + ε,

where ε is some appropriate noise distribution (e.g., zero-mean
Gaussian noise for real-valued features or a discrete distribution
favoring zt+1 = zt for discrete features). This model assumes that
focus of attention is likely to remain constant from time t to t +1,
with some slow decay as the user continues to interact with the sys-
tem. This is consistent with prior research that suggest that selective
attention does not change drastically over time [KU87].

3.3.2. Multiple Tasks

If a visualization setting may comprise a sequence of separate tasks,
we may also construct dynamical models that loosely encode that
user’s attention may change in one of two ways: either the current
task has not yet completed, in which case we may assume a simple
drift model as described above. Otherwise, if the task has com-
pleted, we might model the attention at the next time step as being
drawn from some broad distribution over the space of possible fo-
cus points. In such a construction our dynamical model would be
a mixture distribution with two components corresponding to the
continuation of a task or beginning a new task. Such an approach
has been used to model user intent in online games from observed
low-level behavior [GGE∗14].

3.3.3. Evolution of Attention

Koch and Ullman hypothesized that it is useful to consider bias
when modeling attention shifts [KU87]. There are two primary
mechanism that drives the evolution of attention: spatial proxim-
ity and similarity [KU84, KU87]. Motivated by the prior work, we
adopt a bias vector π = [π( f1), ...,π( fN)] to capture the relative
importance of the various components of the mark space where
π( f ) ∈ [0,1].

For the dynamical model of the hidden state p(zt | zt−1), we as-
sume that the attention at time t + 1 is typically similar to the at-
tention at the previous time step t; that is, that attention does not
change rapidly over time. We further assume that each component
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Figure 3: The first row shows the initial state of the particles as well as the inferences after the first four clicks for participant #311. The
arrows indicate the observed clicks. Within a few clicks, the predictions for the user’s evolving attention converge to circles within the general
area of the observed clicks. The second row shows the particles from participant #116 who clicked points of a single color across different
regions of the map. Here, we see a broad spread for the location parameters but a convergence of the type parameters over time.

of the attention vector evolves independently:

p(zt+1 | zt) = p( f1t+1 | f1t )...p( fNt+1 | fNt )p(πt+1 | πt).

We also suggest that the relative importance of the various com-
ponents of the mark space should remain relatively stable over time,
and can adopt a diffusion for the bias parameter π as well:

p(πt+1 | πt) = N (πt+1;πt ,σ
2
π ).

Note that we must account for boundary effects and normaliza-
tion effects when defining the dynamical model; in practice, we
may simply project out-of-range values onto their feasible domains.

3.3.4. Continuous Features

For continuous features f such as position, we may model the evo-
lution of features using additive zero-mean Gaussian noise:

p( ft+1 | ft ,σ2
f ) = N ( ft+1; ft ,σ2

f ),

where the parameter σ2
f is the variance of the drift. For strictly posi-

tive values such as size or intensity, we could use a similar diffusion
on the logarithm of the value instead, or we could simply project
onto the feasible domain.

3.3.5. Categorical Features

One possibility for modeling the evolution of an arbitrary discrete
parameter f such as color or shape is a simple “biased coin flip”
model favoring no change:

p( ft+1 | ft ,ρ) = ρδ ( ft)+(1−ρ)U\ ft ,

where ρ is a parameter modeling the fickleness of the user, δ ( ft)
is the Kronecker delta distribution with support ft , and U\ ft is the
uniform distribution over the values not equal to ft . This distri-
bution effectively says the user’s attention does not change with
probability ρ; otherwise, it changes to a different value with equal
probability.

3.3.6. Ordinal Features

We suggest treating ordinal feature as either categorical or contin-
uous and using one of the above.

3.4. Observation Model

We must also specify an observation model p(ot | zt), which defines
how latent user attention generates interactions. We must take care
to define such an observation model appropriately for a given sce-
nario, and we will demonstrate how we might construct an explicit
example in our use case scenario below. In a visualization setting,
defining a reasonable choice for such a model is relatively straight-
forward. If a user’s attention is represented by some values in the
same space as the visual elements in the visualization, we may of-
ten construct an observation model that loosely specifies that “users
interact with elements related to their hidden attention space.” We
will show an explicit construction of such a model in Section 4.

3.5. Predicting Movement

Our goal at each time stamp is to predict the user’s possible next
interactions given the set of the user’s previously observed events.
To approach this goal, we will use our hidden Markov model to in-
fer the attention of the user at time t, zt , given the interactions up
to time t, Ot = {oi}ti=1. Unfortunately, this inference is usually not
possible in closed form, but we can use a particle filter. Particle fil-
tering is a well-established technique for inferring the hidden states
of dynamical systems such as ours [DGA00, GSS93].

We represent our belief about the latent state zt given the pre-
vious events Ot with a set of m particles {z(i)t }m

i=1, each particle a
point in the attention space. These particles represent samples from
the posterior distribution p(zt | Ot). Suppose for induction that we
have a set of such particles. Particle filtering proceeds by repeating
the following steps:

c© 2019 The Author(s)
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• We push the particles through the dynamical model p(zt+1 | zt)
by sampling a new value for each particle:

z(i)t+1 ∼ p(zt+1 | zt = z(i)t ).

• We observe the next interaction event ot+1 and weight the parti-
cles according to the agreement with the observation by evaluat-
ing the observation model:

w(i) = p(ot+1 | zt+1 = z(i)t+1).

• We sample a new set of m particles by sampling with replace-
ment from the set of existing particles with probability equal to
the weights {w(i)}.

This set of resampled particles will represent a sample from the
distribution p(zt+1 | Ot+1), and we may proceed inductively. For
each timestamp, we can get p(zt | Ot), which is the particle given
all previous interaction events. However, particles can be at any
location on the visualization. Our goal is to find possible visual
element users are going to interact with at the next time stamp.

To do this, we need one extra step. We treat every mark on the
visualization as a potential candidate for the next interaction. We
sum the weight every particle contributes to each candidate us-
ing the observational model. The attention space thus is a set of
weighted particles, and the particle weights are probability masses.
We select the visual marks with the highest probability mass by
summing the weights of every particle associated with that mark.
The top-K visual marks with the highest probability mass becomes
our prediction set.

4. Illustrative Example

We now demonstrate how to apply this model to a visualization
interface (see figure 4). We chose a map for our study because ge-
ographic maps are one of the most popular wed-based visualiza-
tion types [BDM∗18] and has broad application and use. Below
we demonstrate how to define the hidden state space and discuss
choices for the dynamical and observation models. In this exam-
ple, we assume that users interact with visual marks by clicking on
them.

4.1. Defining Unobservable and Observable States

We define ot to be the click event at time t, which we will represent
as a three-dimensional vector ot = (x′t ,y

′
t ,k
′
t), where (x′t ,y

′
t) is the

x-coordinate and y-coordinate of the click and k′t is the color of
the circle clicked, represented by a discrete integer-valued index
ranging over the eight possible values {1, ...,8}. Note that we use
prime symbols to indicate quantities associated with a click event.

Next, we will define a hidden state space modeling the attention
of the user. Each point in this hidden space is a vector specify-
ing (1): a location (x,y) of interest, (2): a mark color k of inter-
est, and (3): a bias parameter indicating the relative importance of
location and mark color. For this example, we represent the bias
parameter as a number π ∈ [0,1], with 1 indicating a complete fo-
cus on location and 0 indicating a complete focus on mark color. A
point in this latent attention space is thus a four-dimensional vector
z = (x,y,k,π).

Figure 4: The interface used in our experiment. Participants used
their mouse to pan and zoom the map. A tooltip displayed informa-
tion about the crimes on click.

Our model assumes that at every discrete time step t in the in-
teraction process (each time the user makes a click), the user has
an underlying attention zt corresponding to a vector in the atten-
tion space defined above. We seek to infer the attention of the user
through observing the sequence of click events {ot}. We will ap-
proach this inference problem via creating a hidden Markov model
and performing inference with particle filtering.

Our model is fully specified by a dynamical model p(zt | zt−1)
describing how the hidden state evolves and an observation model
p(ot | zt) describing how a hidden attention vector generates click
events. We define each of these below.

4.2. Dynamical Model

Here, we adopt a simple stationary diffusion model. As detailed in
Section 3.3.3, we assume that the four components of the attention
vector evolve independently:

p(zt+1 | zt) = p(xt+1 | xt)p(yt+1 | yt)p(kt+1 | kt)p(πt+1 | πt).

We model the evolution of the continuous location and location–
color bias parameters with a simple Gaussian drift:

p(xt+1 | xt ,σx) = N (xt+1;xt ,σ
2
x );

p(yt+1 | yt ,σy) = N (yt+1;yt ,σ
2
y );

p(πt+1 | πt ,σπ ) = N (πt+1;πt ,σ
2
π ).

The expected value of these parameters is equal to the previ-
ous value, with zero-mean Gaussian diffusion with parameter-
dependent variance added. We will select these parameters σx, σy,
and σπ . Notice also that these three parameters are all also bounded
values: the locations x and y indicates a position on the map and
must lie in its domain, and the bias parameter π must lie in the
interval [0,1]. Therefore, we need to deal with cases when the dif-
fused value steps outside the boundary. Here we simply adopted a
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rule that whenever a diffused value steps outside the boundary for a
variable, we move it onto the boundary in the direction of diffusion.
For example, if πt+1 diffuses to value greater than 1, we will set it
to 1; likewise if the diffused location (xt+1,yt+1) lies beyond the
width and height of the map, we will project onto the nearest point
on the canvas boundary.

Lastly, because mark color is a categorical value, we cannot di-
rectly apply normal diffusion to it. Here we used a discrete analog
of that diffusion following our suggestion in Section 3.3.3. We de-
fine a transition probability ρ and assume that with probability ρ

that the latent mark color of interest does not change. Otherwise,
we chose a new mark color of interest from all possible values with
equal probability:

p(kt+1 | kt ,ρ) = ρδ (kt)+(1−ρ)U\kt
,

where δ is a Kronecker delta distribution and U (K) is a uniform
distribution over the mark colors except kt . Again this choice mod-
els our assumption that attention changes slowly over time.

4.3. Observation Model

We must also specify an observational model p(ot | zt) modeling
the probability of a click event et = (x′t ,y

′
t ,k
′
t) given the attention

zt = (xt ,yt ,kt ,πt) at time t. A brief summary of this observational
model is that we flip a coin with heads probability equal to the
location–color bias parameter πt . If the coin lands heads, we as-
sume the user is focusing on location and will probably click some-
where near the location in (xt ,yt). If not, we assume the user is
focusing on mark color and will click on a mark of the color kt .
Specifically, we define:

p(et | zt ,σx,σy) =

πN (x′t ;xt ,σ
2
x )N (y′t ;yt ,σ

2
y )+(1−π)U (k′t ;kt),

where U (k′t ;kt) denotes a uniform distribution over the available
marks of color kt . This above model therefore assumes that if
the user is interested in position (with probability πt ), she will
click on a position on the map with probability proportional to a
Gaussian distribution centered on (xt ,yt) with diagonal covariance
[σ2

x ,0;0,σ2
y ]. Again, we will specify these parameters.

4.3.1. Predicting Movements

To predict movements, we can apply a particle filter as described
in Section 3.5. Figure 3 shows the initial state of the particle
as well as subsequent updates to the model’s inference for two
participants from the study. We can observe that participant 311
begins by clicking on dots at the center of the projection, and
within a few clicks, the attention inferences converge to circles in
a tightly defined area. For participant 116, we see a convergence
of the type parameters, but a divergence of the location parame-
ters. We make available a demo of the particle filtering approach at
https://washuvis.github.io/particles/.

5. Proof of Concept Evaluation

For a proof of concept, we designed a user study to track and an-
alyze mouse interactions. The dataset presented on the map were

reported crimes in the city of St. Louis for March 2017 and that
we gathered from the St. Louis Metropolitan Police Department’s
database [St.]. The dataset contained 20 features and 1951 in-
stances of reported crime with eight different categories: Homi-
cide, Theft-Related, Assault, Arson, Fraud, Vandalism, Weapons,
and Vagrancy.

To visualize the crime instances, we used a single visual mark
(we represented each crime as a circle on the map). The visual
channels used were position and color which denoted the location
and type of crime respectively. To separate intentional from unin-
tentional interaction, users interacted with the map by clicking on
crime instances which triggered a tooltip displaying information
about the type of crime and when it occurred.

5.1. Participants

We recruited 30 participants via Amazon’s Mechanical Turk. Par-
ticipants were 18 years or older and were from the United States.
Each participant had a HIT approval rate greater than 90% with
at least 50 approved HITs. We paid a base rate of $1.00, an addi-
tional $0.50 for every correct answer plus $1.00 for each of the two
optional post-surveys they completed. The maximum reward was
$6.00.

There were 17 women and 13 men in our subject pool with ages
ranging from 21 to 56 years (µ = 33.5 and σ = 10). Sixty percent
of the participants self-reported to have at least a college education.

5.2. Task

In the main portion of the study, participants interacted with the
crime map through panning, zooming and clicking to complete six
search tasks and their associated question. We divided these ques-
tions into three different task conditions. The three question types
were meant to represent simple lookup tasks for which the partici-
pant had to consult the visualization:

• Geo-Based: Different types of crime that are constrained to a
specific geographical region.

• Type-Based: Same types of crime across the entire map.
• Mixed: Same types of crime and constrained to a specific geo-

graphic region.

The questions were simplified versions of real-world tasks that
represents a potential interest. For instance, a person who in inter-
ested in buying a house may visit a crime map to learn about the
frequent types of crimes in the neighborhood (Geo-Based). A fire
marshal may be interested in trends across reported cases of Arsons
(Type-Based), or an investor may want to learn about theft crimes
that tend to occur near a potential business site (Mixed).

The Geo-Based questions asked the participants to count the
number of crimes within a specified geographical location that had
a specific property. For example, “Count the number of crimes that
occurred during AM in the red-shaded region.” Participants clicked
on crime instances (a total of 43 dots) in the specified region. They
then chose their response from a series of multiple choice options.

Unlike the Geo-Based questions, the Type-Based tasks were not
bounded to a specific region. These questions required participants
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Figure 5: The average prediction accuracy across the three type of tasks (Geo-Based, Type-Based, and Mixed) for varying values of the
prediction set size. We report our results as top-K accuracy. For K = 100 our algorithm successfully predicted the users’ next click, on
average, 95% of the times. This means that we can successful predict that the next click will be within a small subset of the dataset.

to explore the entire map and search for a specified category of
crime. For instance, “How many cases of Arson occurred during
PM?” To answer the question correctly, the participant would click
on instances of Arson (a total of 14 violet dots) to count the number
of cases that occurred during PM.

For Mixed tasks, participants interacted with points of the same
category of crime in a specified area. For example, “There are four
types of Theft Related Crimes: Larceny, Burglary, Robbery, and
Motor Vehicle Theft. Count the number of cases of Robbery in the
red-shaded region.” Participants clicked on blue dots in the red-
shaded area to reveal the tooltip (a total of 85 dots) and recorded
the instances of Robbery.

While we used the same dataset throughout the experiment, each
task focused on a different area of the map and a different type of
crime. We designed the tasks to encouraged participants to click a
large number of valid points. This was done to ensure a reasonably
rich and large interaction dataset.

5.3. Procedure

After selecting the task on Mechanical Turk, participants consented
per Washington University’s IRB protocol. They read the instruc-
tions for the study, then the main portion of the study began with
a short video demonstrating the features of the interface. Specif-
ically, we showed instructions for panning and zooming, and how
to activate the tooltip. The participant then completed the six search
tasks and entered their answers for each by selecting the appropri-
ate multiple choice response. The order of the six tasks was coun-
terbalanced to prevent ordering effects. Once the tasks were done,
they completed a short demographic questionnaire.

5.4. Data Collection and Cleaning

During the experiment, we recorded every mouse click event. We
tracked the data point, its coordinates and a timestamp for the
mouse event. Each participant completed 6 tasks (two per task
type), resulting in 180 trials.

Crowdsourced-based studies are notoriously noisy. It is impossi-
ble to know whether a participant was distracted during the task, or
was clicking through the tasks simply to get paid. To ensure the best
quality data, it is therefore important to filter out inattentive partic-
ipants and invalid responses [KCS08,KZ10]. Consistent with prior
crowdsourced studies in the visualization community that analyzed
interaction data, we used the tasks’ ground truth to both incentivize
accurate responses [OYC15] and to filter potentially distracted par-
ticipants [BOZ∗14,OYC15]. After cleaning, 78 trials remained (28,
23, and 27 trials for Geo-Based, Type-Based and Mixed tasks re-
spectively).

5.4.1. Predicting Movement

To predict movements, we applied particle filter as described in
Section 3.5. We report the top-K visual mark retrieval for our
method where K = {1,5,10,20,50,100}. Although the choice for
K (the size of the prediction set) can be adapted for the applica-
tion, our goal was to have a prediction set that is small, relative to
the size of the dataset. We focus mainly on K = 100 which rep-
resents 5% of the dataset used in the study. This means that for a
given timestep t, the algorithm chooses 100 points with the highest
likelihood of being clicked at t +1.

c© 2019 The Author(s)
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5.4.2. Parameters

We used 1000 particles. The parameters were set as σx = σy =
0.1,σπ = 0.45. The probability of maintaining the same type of
crime as the users’ attention ρ was 0.96. These parameter were
handpicked based on the prior works’ hypotheses for the dynamics
of selective attention [KU84]. However, tuning the hyperparame-
ters using Bayesian optimization (we tested the technique proposed
by Snoek et al. [SLA12]) results in more accurate predictions for
smaller values of K.

5.5. Results

5.5.1. Prediction Accuracy

After gathering the data, we analyzed our model’s ability to ob-
serve mouse clicks and predict interactions before they occur. To
allow time for the algorithm to learn users’ attention, we begin our
predictions at t = 3. If the click at t +1 falls within our prediction
set, we consider this a success. For each type of task (Geo-Based,
Type-Based, and Mixed) we measured the overall predictive accu-
racy across all available clicks for all users:

∑success f ulPredictions
∑ predictions

Figure 5 shows the model’s accuracy across different values of
K = {1,5,10,20,50,100} for each of the three tasks. Unsurpris-
ingly, we see a direct correlation between accuracy and the size
of the prediction sets. For K = 100 (5% of the dataset), our tech-
nique attained an average of 95% at predicting the participants’
next clicks across all three task types (µ = .9548, σ = .1245 for
Type-Based, µ = .9254, σ = .0485 for Mixed, and µ = .9756,
σ = .0719 for Geo-Based tasks). In other words, with high accu-
racy, we can predict that the next click will be within a small set of
data points, relative to the dataset.

Overall, we found that the model performs well for type-based
tasks, even with small prediction sets. For instance, when limited
to only ten guesses for the next click, we see an average accuracy
of 79% across all participants for the type-based task. The average
accuracy increases to 92% when the set size is 20 (0.01% of the
size of the full dataset). This may be due to the small number of in-
stances for type based tasks (there were only 5 cases of Homicides
and 14 cases of Arsons in the dataset).

5.5.2. Accuracy Over Time

Our second analysis sought to evaluate our algorithm’s perfor-
mance as a function of the number of clicks observed. For each
type of task, we measure the prediction accuracy (set size = 100)
for the first 20 clicks observed. Consistent with our previous anal-
ysis, we begin our predictions at t = 3. Figure 6 summarizes our
findings. Our analysis reveals that the technique promptly achieves
high prediction accuracies and performance remains fairly stable
with more observations.

6. Discussion

The hidden Markov model is a general framework that is widely
used for modeling sequence data in areas such as natural language

Figure 6: The average accuracy over time for the three types of
tasks in the study. After learning from 3 click interactions, the al-
gorithm immediately achieves high prediction accuracy. We found
that prediction accuracies remain fairly constant over time.

processing [MS99], speech recognition [Jel97, RJ93], and biologi-
cal sequencing [DEKM98, SVHK∗98]. However, we demonstrate
its utility for modeling attention from interaction with a visual-
ization system. There are many possible variations for the model,
the implementation, and parameters settings. Examples include
choices for the diffusion parameters, number of particles for the
particle filter, and prediction set sizes. A designer may tune these
parameters or customize them based on the visualization or task.
We see this as a strength of the approach which can seed many
opportunities for future work.

Although, the evaluation uses a single interface, we posit that the
approach in this paper is generalizable under transparent assump-
tions. We leverage data mapping principles and the notion that we
can represent a visualization as a set of primitive visual marks and
channels. Designers can apply the approach to any visualization
that can be specified in this manner. The model assumes that the
visual marks are perceptually differentiable, and relies heavily on
good design practices. To specify a user’s evolving attention, we
must first carefully define the mark space, M . One way to improve
this process is to automatically extract the visual marks and chan-
nels from the visualization’s code.

Applying a simpler solution to our illustrative example may
be possible. For instance, a k-nearest neighbors approach (k-NN)
based on a moving window of past interactions might result in sim-
ilar accuracies. While k-NN and other pattern recognition methods
may work well for simple scenarios, we opted for a technique that
predicts based on a sequence of features. The model in this paper
provides a generalizable approach that allows us to modify the def-
inition of the latent state space (e.g., attention or “intent”) or even
test hypotheses by simulating how different latent variables give
rise to actions. We can, for example, use this model to reason about
the distinct forces that may drive interactions across task types. Ad-
ditionally, the proposed particle filtering approach has a computa-
tional complexity of O(n) for inferences and O(nm) for each pre-
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diction, where m is the number of marks on the visualization and n
is the number of particles. For 1000 particles, the running time is
0.058 seconds per iteration, demonstrating that the technique is ap-
propriate for real-time inference and predictions [CRM91, Mil68].

Modeling attention can be a rich signal for inferring goals, in-
tention and interest [Hor99a, HKPH03], and information about
users’ current and future attention can be useful for allocat-
ing computational resources [HKPH03] or for supporting data
exploration [FH18]. For example, the system can perform pre-
computation or pre-fetching based on its predictions. For large
datasets that may have overlapping points, a straightforward ap-
proach can be to redraw the points in the prediction set. Do-
ing so can make it easier for users to interact with points that
match their interests but may have initially been occluded by other
visual marks. For more passive adaptations, designers can use
the approach in this paper to inform techniques for target assis-
tance [BMSG11]. The bubble cursor technique, for example, does
not change the visual appearance of the interface but increases the
click radius for the given target, thereby making them more acces-
sible [GB05]. Another possibility is target gravity, which attracts
the mouse to the target [BMSG11]. Future work can explore how
to utilized such techniques to support the user during analytic tasks.

The general idea of mixed initiative systems [AGH99, Hor99a,
Hor99b, Hor07] or tailoring an interface based on users’ skills or
needs has existed for many years in HCI [GW04]. Researchers
have explored the tradeoff between providing support and minimiz-
ing disruptions [APCJ13, SLC∗11]. In visualization, Ceneda et al.
provides a comprehensive overview of techniques for the provid-
ing guidance in visual analytics [CGM∗17]. The work in the paper
aligns well with this broader research agenda.

7. Limitations and Future Work

Although the work in this paper focuses on learning and anticipat-
ing future actions, we believe that the proposed framework opens
possibilities for future work. One possible path for future work is to
investigate the model’s performance on more complex tasks. In our
experiment, we controlled the tasks by instructing participants to ei-
ther search for a specific reported crime or identify a pattern in the
dataset. While these tasks were designed based on realistic scenar-
ios, they assume that the user has a specific and unchanging goal.
As a result, the search patterns we observed may not generalize
to open-ended scenarios, or when the user’s interest change while
interacting with the data. It is also possible that there are some sce-
narios where the user’s attention cannot be represented as subspace
of the visualization marks (e.g., attending to negative space). Future
work can evaluate the approach with open-ended tasks.

One of the main challenges of modeling user behavior in the vi-
sualization community is there are no large-scale training datasets.
Researchers typically have to design and conduct user studies to
collect data. This limitation not only excludes many machine learn-
ing approaches but it increases the difficulty of demonstrating gen-
eralizability of a technique. The map used in our experiment was
simplistic compared to other real-world visual analytics systems.
Future work can test the model using different combinations of vi-
sual variables and channels on a single map, or an entirely different

type of visualization. It is also common for designers to aggregate
the data based on the zoom level of the interface. It is essential to
validate the technique by changing and increasing the size of the
dataset, which can result in the drastic changes in the appearance
and number of visual marks.

8. Conclusion

In this paper, we have proposed a generalizable approach to mod-
eling users’ evolving attention and actions with a visualization sys-
tem. We used a hidden Markov model and represented attention
using the primitive visual marks and channels of the visualization
design. We demonstrated with a simple map how to apply this ap-
proach to a given visualization design.

We conducted a user study and captured mouse click data as
participants explored a map showing a real-world crime dataset.
The results of the study demonstrate that the approach is highly
successful at modeling interaction and predicting users’ next clicks.
We observed a top-K accuracy of 95% at guessing actions before
they occur for K = 100. These results are exciting and contribute to
our overall goal of creating intelligent systems that learn about the
user, her analysis process, and her task as she uses the system. We
believe that the work in this paper is a significant step toward this
goal and can act as a catalyst for future work aimed at developing
visual analytic systems that can better support users.
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Appendix: Extended Results

Mechanical Turk data is notoriously noisy, and it is common prac-
tice to filter inattentive participants. We focused our previous anal-
yses on subjects who provided the correct answers. However, nois-
iness is an inherent feature in real-world data, and it is relevant to
demonstrate how the technique fare under realistic circumstances.

Table 2: The top-K accuracy for the minimally filtered dataset.

1 5 10 20 50 100
0.0542 0.3833 0.6292 0.7417 0.7625 0.8042
0.0304 0.1300 0.2395 0.3992 0.6893 0.9083
0.0149 0.0948 0.1826 0.3659 0.8018 0.9752

In this appendix, we present the algorithm’s performance with
the minimally filtered data. To guarantee that the algorithm has
enough time to learn, we only excluded participants with five clicks
or less. From table 2, we can observe prediction accuracy trends
that are similar to our main results. It is important to note that this
dataset also included participants who apparently ignored the ex-
periment instructions and were likely clicking through the tasks to
get paid. Still, for K = 100, the next click appeared in the predic-
tion set, on average, 90% of the times. The number of sessions was
32, 44, and 43 for Type-based, Mixed, and Geo-Based tasks respec-
tively.
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